简体 | 繁体
loading...
新闻频道
  • 首页
  • 新闻
  • 读图
  • 财经
  • 教育
  • 家居
  • 健康
  • 美食
  • 时尚
  • 旅游
  • 影视
  • 博客
  • 群吧
  • 论坛
  • 电台
  • 焦点新闻
  • 图片新闻
  • 视频新闻
  • 生活百态
  • 娱乐新闻
您的位置: 文学城 » 新闻 » 焦点新闻 » 华人学生写出2840页博士论文:目录31页感谢名单20页

华人学生写出2840页博士论文:目录31页感谢名单20页

文章来源: HK01 于 2021-01-26 18:23:22 - 新闻取自各大新闻媒体,新闻内容并不代表本网立场!
被阅读次数

一篇论文的篇幅竟然多达数千页,比很多教材都要厚,这简直无法想象。不过,学术界的"能人异士"层出不穷,德州大学奥斯汀分校的CS博士生Zhao Song就做到了。

这是一篇2019年8月提交的博士论文,总篇幅达到了2840页,其中目录就占了31页。此外在致谢部分,论文作者还以整整20页的篇幅感谢了合作者、提供宝贵意见以及读博期间帮助过他的人

不过,作者在论文第1页做了免责声明,表示:”这篇论文不符合德州大学奥斯汀分校当前的写作格式指南,论文仅供参考使用。”下面让我们简单了解下这篇巨长的博士论文到底讲了些什么。

矩阵(matrix)在很多理论计算器科学和机器学习问题中发挥至关重要的作用。在这篇博士论文中,作者旨在提供对矩阵的更好理解,并且文中的很多见解对古老的、已经得到充分研究的算法问题带来了改进。具体来讲,作者从三个层面对计算器科学和机器学习领域的矩阵展开了研究。

首先,他探究了矩阵在优化算法中的作用。作者研究了大量的矩阵优化问题,并针对线性规划、经验风险最小化、常微分方程和深度神经网络提供了新的求解方法和结果。其中,在线性规划优化问题中,作者提出了一种在当前矩阵乘法时间上运行的新算法,并表示gaisuan”解决了停滞了三十年之久的研究障碍”。此外,该算法可以泛化至多种多样的凸优化问题,即经验风险最小化问题。具体算法如下所示:

论文截图(utexas.edu)

然后,他探究了随机矩阵中的集中不等式问题。具体来讲,作者将大量的切尔诺夫(Chernoff)类型的标量集中不等式和斯宾塞(Spencer)类型的差异定理泛化到矩阵中。

标量随机变量集中的切尔诺夫边界是随机算法分析中的基本工具。过去十年,切尔诺夫边界的矩阵泛化得到广泛应用,但这种泛化存在着一定的限制,并且是否可以消除这些限制的问题也悬而未决。通过提供大量更宽松独立性假设条件下新的矩阵切尔诺夫边界,作者对这一问题给出了肯定的答案。

以下为定理8.1.1:k均匀强瑞利分布(Strongly Rayleigh Distribution)的矩阵切尔诺夫边界。

论文截图(utexas.edu)

斯宾塞定理是差异理论中的一个著名结果,但如何将斯宾塞定理泛化至矩阵设置中这个重要问题却没有得到解决。作者在这方面取得了一些进展,并证明了在某些限制设置条件下斯宾塞定理可以实现矩阵泛化。并且,文中的结果可以泛化至著名的卡迪森-辛格猜想(Kadison-Singer conjecture)问题。

以下为定理1.3.4:卡迪森- 辛格问题。

论文截图(utexas.edu)

最后,他提出了一系列求解矩阵问题的新算法。新算法大致可以分为两类:矩阵分解问题和结构化重建问题。在矩阵分解算法上,针对各种低秩矩阵分解,作者提出了新的算法,包括一些新的固定参数可处理的算法;在结构化重建算法上,针对一些具有结构矩阵的重建任务,给出了新的算法。例如,作者重新考虑了L2/L2的压缩感知问题,提出了编码速度更快和列稀疏更小的算法。此外,作者还给出了针对傅里叶变换(Fourier transform)的快速算法等。

论文作者Zhao Song本科毕业于The Simons Institute for the Theory of Computing,获得了Computer Science学士学位,博士毕业于University of Texas at Austin Computer Science学系,由Eric Price教授指导。在进入得克萨斯大学之前,Zhao Song曾是哈佛大学的访问学者,也在IBM研究中心实习过。

Zhao Song的研究领域广泛,涉及机器学习、理论计算器科学和数学,如深度学习理论、对抗样本、强化学习、线性回归、矩阵/ 张量分解、线性规划、傅立叶变换等。论文被引用次数超过2000次:

Zhao Song被引用次数(网页截图/机器之心)

  • 海外省钱快报,掌柜推荐,实现买买买自由!
查看评论(18)
  • 文学城简介
  • 广告服务
  • 联系我们
  • 招聘信息
  • 注册笔名
  • 申请版主
  • 收藏文学城

WENXUECITY.COM does not represent or guarantee the truthfulness, accuracy, or reliability of any of communications posted by other users.

Copyright ©1998-2025 wenxuecity.com All rights reserved. Privacy Statement & Terms of Use & User Privacy Protection Policy

24小时热点排行

朋友1句话催生灵感!男靠"副业"年营收1000万,披露创业秘诀
北大副校长任羽中投案,曾是四川省文科状元
"穷人买不起,中产看不上",迪卡侬的文案又"翻车"了
年薪上亿清华学霸 在美遭民事刑事双重起诉在逃
71岁老翁自称射杀柯克 系为掩护枪手逃跑干扰调查




24小时讨论排行

华裔女生引毛语录 主张政治暗杀遭肉搜 网:遣返她
一场思想的巨震,正在美国发生
美网球选手在华发表“冒犯中国菜”言论 被斥“极无知”
川普被澳洲记者提问惹毛 手指对方:安静!
习近平似仍沉醉于阅兵 要籍此完善大党大国典礼制度
川普竞选时说让电费减半 现在美国电价正迅速上涨
美国各地僱员陆续因"庆祝"遭解僱 万斯呼吁举报
川普访中将成行?传中国买500架波音、大豆
川普怒告纽时索赔150亿 美媒终尝到“愤怒的铁拳”?
吉米坎摩尔暗示柯克案疑凶或是川普支持者 节目遭停播
数额巨大!两华人篡改礼品卡诈骗案 你花钱他赚钱!
FBI局长国会质询成“吵架比赛” 现场看谁嗓门大?
AI应用快速渗透 引爆美国电力荒!核能重返C位
川普扬言:半导体与药品关税将高于25% 缺药潮将至?
12岁女孩被虐待致死案:生父为何哭着为继母求情
给川普国王级排场!英国出动1300人、120匹骏马…
文学城新闻
切换到网页版

华人学生写出2840页博士论文:目录31页感谢名单20页

HK01 2021-01-26 18:23:22

一篇论文的篇幅竟然多达数千页,比很多教材都要厚,这简直无法想象。不过,学术界的"能人异士"层出不穷,德州大学奥斯汀分校的CS博士生Zhao Song就做到了。

这是一篇2019年8月提交的博士论文,总篇幅达到了2840页,其中目录就占了31页。此外在致谢部分,论文作者还以整整20页的篇幅感谢了合作者、提供宝贵意见以及读博期间帮助过他的人

不过,作者在论文第1页做了免责声明,表示:”这篇论文不符合德州大学奥斯汀分校当前的写作格式指南,论文仅供参考使用。”下面让我们简单了解下这篇巨长的博士论文到底讲了些什么。

矩阵(matrix)在很多理论计算器科学和机器学习问题中发挥至关重要的作用。在这篇博士论文中,作者旨在提供对矩阵的更好理解,并且文中的很多见解对古老的、已经得到充分研究的算法问题带来了改进。具体来讲,作者从三个层面对计算器科学和机器学习领域的矩阵展开了研究。

首先,他探究了矩阵在优化算法中的作用。作者研究了大量的矩阵优化问题,并针对线性规划、经验风险最小化、常微分方程和深度神经网络提供了新的求解方法和结果。其中,在线性规划优化问题中,作者提出了一种在当前矩阵乘法时间上运行的新算法,并表示gaisuan”解决了停滞了三十年之久的研究障碍”。此外,该算法可以泛化至多种多样的凸优化问题,即经验风险最小化问题。具体算法如下所示:

论文截图(utexas.edu)

然后,他探究了随机矩阵中的集中不等式问题。具体来讲,作者将大量的切尔诺夫(Chernoff)类型的标量集中不等式和斯宾塞(Spencer)类型的差异定理泛化到矩阵中。

标量随机变量集中的切尔诺夫边界是随机算法分析中的基本工具。过去十年,切尔诺夫边界的矩阵泛化得到广泛应用,但这种泛化存在着一定的限制,并且是否可以消除这些限制的问题也悬而未决。通过提供大量更宽松独立性假设条件下新的矩阵切尔诺夫边界,作者对这一问题给出了肯定的答案。

以下为定理8.1.1:k均匀强瑞利分布(Strongly Rayleigh Distribution)的矩阵切尔诺夫边界。

论文截图(utexas.edu)

斯宾塞定理是差异理论中的一个著名结果,但如何将斯宾塞定理泛化至矩阵设置中这个重要问题却没有得到解决。作者在这方面取得了一些进展,并证明了在某些限制设置条件下斯宾塞定理可以实现矩阵泛化。并且,文中的结果可以泛化至著名的卡迪森-辛格猜想(Kadison-Singer conjecture)问题。

以下为定理1.3.4:卡迪森- 辛格问题。

论文截图(utexas.edu)

最后,他提出了一系列求解矩阵问题的新算法。新算法大致可以分为两类:矩阵分解问题和结构化重建问题。在矩阵分解算法上,针对各种低秩矩阵分解,作者提出了新的算法,包括一些新的固定参数可处理的算法;在结构化重建算法上,针对一些具有结构矩阵的重建任务,给出了新的算法。例如,作者重新考虑了L2/L2的压缩感知问题,提出了编码速度更快和列稀疏更小的算法。此外,作者还给出了针对傅里叶变换(Fourier transform)的快速算法等。

论文作者Zhao Song本科毕业于The Simons Institute for the Theory of Computing,获得了Computer Science学士学位,博士毕业于University of Texas at Austin Computer Science学系,由Eric Price教授指导。在进入得克萨斯大学之前,Zhao Song曾是哈佛大学的访问学者,也在IBM研究中心实习过。

Zhao Song的研究领域广泛,涉及机器学习、理论计算器科学和数学,如深度学习理论、对抗样本、强化学习、线性回归、矩阵/ 张量分解、线性规划、傅立叶变换等。论文被引用次数超过2000次:

Zhao Song被引用次数(网页截图/机器之心)